Ремонт микроволновых приборов

Статистика


Онлайн всего: 1
Гостей: 1
Пользователей: 0

Элементы техники

Вполне понятно, что специфика СВЧ излучения накладывает свой отпечаток и на компоненты, из которых строятся электрические схемы. Мы рассмотрим только те из них, которые в той или иной мере встречаются в микроволновых печах.


Волноводы

Для передачи энергии от генератора к нагрузке в СВЧ диапазоне используются волноводы. Волновод представляет собой полую, металлическую трубу, как правило, круглого или прямоугольного сечения (рис. 1.3).

 

Рис. 1.3. Внешний вид прямоугольного и круглого волноводов


Электромагнитная энергия передается по волноводу примерно так же, как вода по водопроводной трубе. В принципе, водопроводная труба, если ее тщательно очистить от грязи и накипи, вполне может быть использована и для транспортировки электромагнитных волн. Продолжая аналогию, можно заметить, что в местах проточки воды может просачиваться и электромагнитная анергия, поэтому сочленение отрезков волноводов необходимо производить как можно плотнее. На этом, пожалуй, сходство заканчивается, и начинаются различия. Глядя не рисунок, нетрудно понять, что изготовление волноводов вещь не простая и дорогостоящая. В отличие от ржавых внутренностей водопроводной трубы внутренняя поверхность волноводов често полируется и покрывается тонким слоем серебра. Очевидно, что переход с обычной двухпроводной линии на волноводы произошел не с целью экономии средств. Остановимся более подробно на причинах такого перехода. Как уже отмечалось, с повышением частоты возрастает доля мощности, теряемой на излучение. Кроме того, что это плохо само по себе, это приводит к засорению эфира радиопомехами и отрицательно сказывается на здоровье радио — t* электронных устройств. Поэтому уже ы метровом диапазоне передача сигналов осуществляется по коаксиальному кабелю, представляющему собой двухпроводную линию, у той один проводник выполнен в виде экранирующей оп летки, предотвращающей излучение энергии. Однако прс дальнейшем повышении частоты возрастают потери, связанные с затуханием сигнала в материале, заполняющем пространство между центральной жилой и оппогкой кабеля. При достаточно высокой частоте и большой передаваемой мощное 1 и это приводит к перегреву кабеля и выходу его из строя. к примеру, коаксиальный кабель РК-75 с полиэтиленовым наполнением и длиной 10 м на частоте 3 ГГц теряет 84% передаваемой мощности. Медный прямоугольный волновод при тех же условиях теряет всего около 5% мощности. Используя в качество наполнителя материалы с малым затуханием, можно повысить уровень допустимой передаваемой мощности, а поскольку наименьшими потерями обладает воздушное заполнение, то кабель естественным образом трансформируется в коаксиальный волновод. Конструктивно последний уже ничем не проще волноводов, изображенных на рис. 1.3, скорее даже наоборот, поэтому выбор типа волновода определяется уже не экономической целесообразностью, а различием о их характеристиках. Может возникнуть вопрос, откуда вообще берутся потери в волноводе, если он изготовлен из меди с площадью поперечного сечения в десятки миллиметров? Ответ заключается в том, что токи текут не по всему сечению волновода, а лишь там. куда проникает электромагнитное поле по так называемому скин-слою. Глубина скин-слоя зависит от частоты и удельной проводимости металла, из того изготовлен волновод. Она вычисляется по формуле:

 

К примеру, на частоте 2.45 ГГц глубина проникновения поля составляет от 1.3 мкм для меди до 10 мкм для нержавеющей стали. Поэтому общая площадь поперечного сечения, по которому проходит ток, относительно невелика. Большое значение имеет качество внутренней поверхности волновода. Чем выше шероховатость стенок волновода, тем длиннее путь СВЧ токое и тем быст—

рее происходит затухание волны. Поэтому для снижения потерь волноводы иногда полируют и покрывают тонким слоем серебра, на глубину скин-слоя.

В СВЧ технике встречаются волноводы с различным профилем поперечного сечения: П-об-разные, Н-образные, круглые, овальные и т.д. В микроволновых печах используются только прямоугольные волноводы, поэтому мы ими и ограничимся.

В целом конфигурация поля в волноводе может иметь очень сложную форму. К счастью, теория дает механизм, позволяющий свести сложную структуру поля к набору относительно простых типов, из которых, при желании, можно воссоздать любую конфигурацию существующих в волноводе полей. Прежде чем начать анализ типов, существующих в прямоугольном волноводе, сформулируем некоторые правила, которые вытекают из теории электромагнитных колебаний.

1. Электрические и магнитные силовые линии в электромагнитных полях взаимно перпендикулярны.

2. Магнитные силовые линии замкнуты и охватывают проводник с током или переменное электрическое поле.

3. Электрические силовые линии или идут от одного электрического заряда к другому, или подобно магнитным линиям замкнуты и охватывают переменное магнитное поле.

4. Изменение электромагнитного поля во времени и в пространстве, вдоль произвольного направления, в однородной среде, происходит по синусоиде или косинусоиде.

5. При нормальном отражении волны от проводящей поверхности (т.е. когда направления падающей и отраженной волн прямо противоположны) ее фаза изменяется на 180°.

6. Магнитные силовые линии у поверхности проводника всегда параллельны этой поверхности.

7. Электрические силовые линии не могут идти вдоль поверхности проводника, а всегда перпендикулярны этой поверхности.

Два последних свойства определяют структуру поля у поверхности проводника, т.е. на границе между проводником и областью распространения электромагнитной волны. Поэтому их называют граничными условиями. Электромагнитное поле всегда имеет такую структуру, при той выполняются эти условия.

При распространении волн в волноводе вдоль поперечных координат устанавливаются так называемые стоячие волны. В данном случае название говорит само за себя. Хотя структура волны в поперечном направлении может быть точной копией структуры волны в продольном направлении, между ними, как говорят в Одессе, есть две большие разницы. В первом случае поле статично и никакого движения вдоль поперечных координат не наблюдается, меняется лишь амплитуда поля, а во втором случае картина поля все время сдвигается в сторону распространения волны со скоростью V.

Распространяемые по волноводу электромагнитные волны условно можно разделить на два основных типа. Волны, имеющие составляющую электрического поля вдоль направления распространения и не имеющие магнитной, относятся к Е-типу. И наоборот, волны, имеющие магнитную составляющую вдоль направления распространения и не имеющие электрической, относятся к Н-типу. Каждый тип волны обозначается соответствующей буквой с индексом из двух цифр, показывающим число стоячих полуволн вдоль большей и меньшей сторон поперечного сечения волновода. Таким образом, по названию волны можно определить соответствующую ей структуру поля.

Если размеры обеих поперечных координат меньше, чем длина полуволны, то через такой волновод волна распространяться не может. В этом случае говорят, что волновод является запредельным для данного типа волны.

Наибольшая длина волны, которая может распространяться по волноводу, называется критической. При фиксированных величиных волновода критическая длина волны зависит от ее типа. Ниже приведена формула для ее расчета.

 


Как видно из формулы, чем выше индексы тип, тем больше должны быть поперечные размеры волновода, при которых возможно распространение данного типа. Это обстоятельство облегчает селекцию типов, поскольку на рабочей длине волны всегда можно так подобрать размеры а и Ь, чтобы распространялись только нужные типы волны. На практике в качестве рабочего обычно используется тип Ню, изображенный на рис. 1.4. Для большей наглядности на рисунке также приведены графики распределения электрического и магнитного полей вдоль широкой стенки. Равенство нулю второго индекса в названии волны говорит о том, что вдоль узкой стенки поле не меняется. Обратите внимание, что отсутствует не само поле, а лишь его изменение. Таким образом, размер b не влияет ни на структуру распределения полей в волноводе, ни на его критическую частоту. Практически из этого рекомендуется, что даже очень узкая щель, шириной более У2, может рассматриваться как волновод, проводящий СВЧ энергию с минимальными потерями.

 

Рис. 1.4. Структура электромагнитного поля в прямоугольном волноводе для волны типа Ню


Столь тщательное рассмотрение этого типа не случайно, поскольку он является основным для прямоугольного волновода. Можно даже сказать, основным в квадрате, поскольку, во-первых, это рабочий тип волны для подавляющего большинства задач, в частности именно этот тип используется в микроволновых печах, а во-вторых, он основной по определению. Для волноводов произвольного поперечного сечения основным называется наиболее низкочастотный тип волны. Все остальные — это высшие типы, как правило, являющиеся паразитными. Основные преимущества данного типа волны состоят в следующем:

1. Наименьшие размеры волновода, при заданной длине волны.

2. Простая конфигурация поля и, как следствие, простота при его возбуждении и при согласовании волновода с нагрузкой или другими устройствами.

3. Относительная удаленность от других типов, что облегчает его селекцию.

Как известно, все познается в сравнении, поэтому не лишним будет вкратце рассмотреть и некоторые другие типы волн. Если постепенно увеличивать частоту, излучаемую через волновод, т.е. уменьшать длину волны, то в определенный момент вдоль широкой стенки волновода сможет уместиться две стоячие полуволны. Тогда создадутся условия для возникновения типа Нго. При дальнейшем увеличении частоты появятся типы Hoi, Ни, En и т.д. Структура полей для типов, ближайших к основному, отображена на рис. 1.5. Анализируя эти типы, не трудно выявить определенные закономерности в структуре полей и, при желании, построить типы с более высокими индексами.

 

Рис. 1.5. Структура ближайших к основному типов волн в прямоугольном волноводе

 


Рис. 1.6. Критические длины волн прямоугольного волновода (стрелки указывают области, в которых указанные типы волн могут распространяться по волноводу)


На рис.1.6 представлена диаграмма распределения критических дпин волн, наиболее близких к основному типу. У стандартных волноводов, как правило, выполняется соотношение Ь/а<0.5, поэтому ближайшим к основному является тип Нго. При этом расстояние между критическими длинами волн основного типа и всеми последующими увеличивается.

Заштрихованный участок показывает область длин волн, рекомендованных к использованию, поскольку в этом случае будет распространяться единственный тип Ню. Данный участок не примыкает непосредственно к области отсечки. Это не случайно. Дело в том, что распространение электромагнитных волн в замкнутых системах, какой и является волновод, отличается от их распространения в свободном пространстве. Это, в частности, проявляется в том, что скорость распространения электромагнитной энергии в волноводе меньше чем скорость света. Различие наиболее ощутимо в окрестности критической длины волны. Замедление скорости электромагнитных волн увеличивает потери энергии в стенках волновода. На рис. 1.7 отображена зависимость затухания в волноводе от частоты, из той видно, что при частотах, близких к критической, потери возрастают во много раз.

 

Рис, 1.7. Зависимость потерь в стенках прямоугольного волновода от частоты (штриховой линией отмечен коаксиальный волновод с той же площадью поперечного сечения)


Попутно заметим, что рост потерь при увеличении частоты связан с уменьшением толщины скин-слоя. Пунктирной линией для сравнения отображена аналогичная зависимость для коаксиального волновода с той же площадью поперечного сечения. Как видим, сравнение не в пользу последнего, если не считать узкой полоски вблизи критической частоты. Именно поэтому этот участок и не используется на практике.

Длина волны в волноводе Хв больше длины той же самой волны в свободном пространстве. Эта разница тем ощутимее, чем ближе Хв расположена к Хкр. Ниже приведена формула для расчета Хв, которая может быть полезна при расчете и анализе различных волноводных устройств.

 

При воздушном заполнении волновода — ер=1 и формула слегка упрощается.


Возбуждение волноводов

Возбуждение волн в волноводе можно осуществить с помощью устройства, создающего в некотором сечении волновода переменное электрическое или магнитное поле, совпадающее по конфигурации силовых линий с полем волны требуемого вида. Возбуждение вопн происходит также при создании в стенках волновода СВЧ токов, совпадающих с токами волны желаемого типа. Сразу оговоримся, что любое устройство, служащее для возбуждения волн, с таким же успехом может использоваться для их приема.

При передаче энергии от генератора к нагрузке, большое значение имеет согласование передающего тракта. Под согласованием понимается способность передающей линии обеспечить

из наиболее сложных задач при проектировании микроволновых систем, особенно большой мощности. Любые неоднородности в тракто, к числу которых относятся и эпомснты возбужде! 1ия, и сама нагрузка, способны привести к отражению мощности обратно к генератору. Помимо того, что это снижает выходную мощность и КПД инфраструктуры, отраженная энергия неблагоприятно воздействует на генератор и при большом рассогласовании может вывести его из строя.

Обычно, энергии от генератора поступает по коаксиальной линии. Подключение ее к волновому осуществляется либо в виде магнитной петги связи, либо в виде электрического штыря (рис. 1.8).

 

Рис. 1,6. Емкостной (а) и индуктивный (б) способы возбуждения волновода


Магнитная петля связи, как ираьило, располагается в месте, где магнитное поле наиболее сильно, причем ее плоскость перпендикулярна магнитным силовым линиям. Подобный вид связи, в частности, используется внутри магнетрона для отбора онсргии от его копобатолыюй инфраструктуры.

Электрический штырь размещается в максимуме электрического поля, вдоль его силовых линий. Во многих случаях штырем служит продолжение внутреннего провода коаксиальной линии или вывод энергии генераторного прибора. Такой тип возбуждения используется в большинстве микроволновых печей Обычно в них мощность от магнетрона попадает в рабочую камеру через небольшой отрезок прямоугольного волновода. Оказывается, проще согласовать магнетрон с волноводом, а затем вог невод с рабочей камерой, чем непосредственно магнетрон с камерой.

возбуждение волновода не такой простой вопрос, как может показаться на первый взгляд. Каибогьшиа сложности вознихают при согласовании, в микровог новых печах в особенности, поскольку нагрузка в этом случае может меняться в широких пределах. Практически невозможно согласовать магнетрон с рабочей камерой таким образом, чтобы и при максимальной загрузке печи и лри практически пустой камере отражаемая мощность находилась в допустимых пределах (не более 25–30%). Поэтому во всех руководствах к микроволновым печам оговаривается минимальная загрузка камеры (около 200 г). Аналогичные сложности возникают при попытке замены магнетронз одного типа на другой, дажо если основные электрические параметры у них практически одинаковы. Если имеются отличия в геометрических величиных вывода энергии, могут возникнуть проблемы, непредвиденные для непосвященных. Для посвященных проблемы останутся, но статус их изменится. Они станут ожидаемыми и во многих случаях устранимыми. Рассмотрим более детально возбуждение электромагнитных вогн в волноводе. Типичная конструкция подключения магнетронного генератора к волноводу отображена ма рис. 1.9а.


Вывод энергии магнетрона по своей сути — это антенна в виде электрического штыря, являющегося продолжением внутренней жилы коаксиального волновода. Прямоугольный волноводе одной стороны закорочен металлической стенкой, расположенной на расстоянии примерно в четверть длины полны. Размеры штыря и расстояние до короткоэамыкающей стенки явпяются ключевыми при согласовании генератора с волноводом. В нашем случае это чуть более 3 см. Длина антенны в волноводе должна бькь несколько ниже этого значения, поскольку электрическая емкость, образованная верхней крышкой волновода и торцом антенны, увеличивает эффективную длину последней. Другими словами, увеличение торцевой емкости антенны эквивалентно некоторому увеличению ее длины. Последний вариант меиоо предпочтителен, поскольку, во-первых, создает у острия антенны высокую напряженность поля, что может привести к электрическим пробоям, во-вторых, увеличивает локальный разогрев антенны и, наконец, требует большей высоты волновода. Обычно вывод магнетрона оканчивается медным колпачком шириной около 1.5 см. Это увеличивает торцевую емкость, поэтому длина антенны может быть несколько ниже чем XIA. Форма и размеры колпачков, а также длина антенны у разных магнетронов могут отличаться друг от друга. Это связано с тем, что каждый магнетрон рассчитан на работу с волноводом определенных размеров. Поэтому при замене магнетронов важно это учитывать и стараться подбирать замену не только в соответствии с электрическими параметрами, но и с одинаковыми выводами энергии.

Теперь рассмотрим, какое значение имеет расстояние L между торцевой стенкой волновода и выводом энергии магнетрона. Как было сказано ранее, это расстояние примерно равно XIA. Вначале, для простоты, допустим, что вывод энергии не нарушает структуру поля в волноводе. В соответствии с граничными условиями электрическое поле распределится в волноводе по синусоиде. Штырь магнетрона будет излучать электромагнитные волны во всех направлениях. Назовем волну, движущуюся в нужном направлении, т.е. к нагрузке, — прямой волной, а волну, движущуюся в противоположном от желаемого направлении — обратной. Обратная волна после зеркального отражения от металлической стенки изменит свою фазу на 180°. Поскольку на ее движения к стенке и обратно уйдет половина периода, или еще 180°, то в тот момент, когда отраженная волна достигнет штыря, ее фаза, сделав полный оборот на 360° будет такой же, как и у прямой волны. Поэтому они сложатся и с удвоенной мощностью дружно устремятся в камеру микроволновой печи.

 

Рис. 1.9. Подключение магнетрона к волноводу (а) и распределение напряженности электрического поля в волноводе(б)

Теперь предположим, что расстояние L будет не А/4, а А/2. В этом случае отраженная от стенки волна, возвратясь к штырю, окажется в противофазе с прямой. Эти волны взаимно уничтожатся, распространения энергии вдоль нужного направления не произойдет, и пирожки в камере останутся холодными. Но, как вывел еще Михайло Ломоносов, ничто не исчезает бесследно. Не сумев пробиться в камеру, микроволновая энергия отправится обратно в магнетрон и будет там вершить свои черные дела.

Мы рассмотрели два крайних случая — наилучший и наихудший. Любое другое расположение штыря даст промежуточный результат, т.е. часть энергии уйдет на нагрев пирожков, а часть — на нагрев магнетрона.

В наших рассуждениях мы предполагали, что штырь не изменяет структуру поля. Однако как вы, безусловно, догадываетесь, это далеко не так. Вносимая штырем емкость нарушает синусоидальную форму распределения электрического поля вблизи него. Поле будет концентрироваться в основном внутри этой емкости, и идеальная синусоида трансформируется в реальную картинку на рис. 1.96.

Теперь перейдем к практическим выводам, которые вытекают из предыдущего материала. Если при замене магнетрона происходит изменение емкости, из-за большей или, наоборот, меньшей длины вывода энергии, то неизбежно произойдет рассогласование, следствием того может оказаться перегрев магнетрона и слабый нагрев в камере микроволновой печи. В принципе, в некоторых случаях это можно устранить. к примеру, изменив емкость или сместив магнетрон относительно торцевой стенки. Но лучше этого не делать, поскольку результат подобных действий без специального оборудования трудно отследить, а заранее вычислить важные корректировки практически невозможно. Самый простой и надежный способ — это подобрать новый магнетрон с такой же высотой вывода энергии, как и у старого.


Запредельные волноводы, диафрагмы

Если поперечные размеры волновода меньше критической длины волны, то такой волновод называется запредельным. Распространения энергии через него не происходит. Необходимо помнить, что термин запредельный всегда относителен. Всякий волновод является запредельным для одних частот и обычным для других. Поэтому, когда говорят запредельный, всегда подразумевается рабочая частота, для той волновод таковым является. С помощью подобного волновода можно обеспечить доступ к области, в той сосредоточено электромагнитное поле, и в то же время избежать утечки энергии.

Несмотря на то что распространение энергии в запредельном волноводе отсутствует, переменные электрическое и магнитное поля существуют. Силовые линии поля как бы втягиваются в полость волновода. Амплитуда этих полей убывает по экспоненте по мере удаления от входа. Количественно степень убывания поля снижается примерно в 1000 раз при удалении от входа на расстояние, равное Хкр. В свою очередь, критическая длина волны примерно вдвое превышает диаметр круглого волновода. Поэтому если, к примеру, мы имеем отверстие диаметром 1 мм в металлической стенке толщиной 2 мм, то напряженности полей на противоположных концах этого отверстия будут отличаться, примерно, в 1000 раз. Но это еще не значит, что одна тысячная доля СВЧ мощности будет излучаться в окружающее пространство. Для того чтобы это произошло, необходимо непосредственно у отверстия иметь какой-нибудь приемник микроволнового излучения, к примеру коаксиальный кабель с петлей связи на конце. При его отсутствии лишь очень малая часть энергии, сосредоточенной у выходного отверстия, будет излучаться наружу. Практически, для тех соотношений размеров, которые приведены в нашем примере, можно считать, что излучение отсутствует полностью.

Камера микроволновой печи содержит большое количество различных отверстий, предназначенных для освещения, конвекции воздуха, визуального наблюдения и т.д. Поэтому важно знать, при каких условиях обеспечивается достаточная экранировка камеры. Насколько правомерно считать отверстие в камере запредельным волноводом, если его продольные размеры значительно меньше Хкр? Предположим, что толщина стенки близка к нулю. Такое отверстие уже просто неприлично называть волноводом, поэтому будем называть его диафрагмой, как принято в технической литературе по СВЧ. Соответственно условие А>Хкр уже не может быть достаточным для надежной экранировки. Расчет поля проникающего сквозь диафрагму довольно сложен, поэтому мы рассмотрим лишь некоторые факты, которые позволят как-то ориентироваться в уровне излучения сквозь отверстия в камере микроволновой печи. Практика показывает, что излучение превышающее допустимый уровень, возникает, когда диаметр круглого отверстия составляет примерно 15–20 мм. Поле, возбуждаемое круглой диафрагмой, пропорционально кубу ее радиуса. Поскольку излучение из нескольких отверстий примерно пропорционально их числу, то замена одного большого отверстия несколькими малыми, с той же площадью поперечного сечения, приводит к ослаблению поля

в л/n раз. Этот факт используется при проектировании окон в микроволновых печах, которые изготавливаются в виде мелкоперфорированной сетки. Попутно заметим, что уменьшение диаметра ячеек сетки положительно сказывается и на дизайне микроволновой печи.

Если диафрагма представляет собой не круглое, а щелевое отверстие, то большое значение имеет его пространственная ориентация. Узкая щель не излучает, если она располагается вдоль линий тока, как это отображено на рис. 1.10. Иначе говоря, излучение сквозь щель возникает только тогда, когда она прерывает линии тока на поверхности проводника. Сказанное относится к узкой щели, ширина той значительно меньше длины волны возбуждающих колебаний.

Значительное повышение излучения сквозь диафрагму может произойти, если непосредственно вблизи отверстий расположены какие-либо провода или иной проводящий мусор. Особенно если сквозь отверстие проходит отрезок проводника. Это может быть забытый при ремонте или сборке винт, шуруп, кусок провода и т.д. В этом случае диафрагма может превратиться в отрезок коаксиального волновода, для того не существует ограничений на диаметр, и излучаемая мощность может увеличиться в сотни раз. Отсюда вывод: чистота — залог здоровья.


Резонаторы

Если в волноводе на рис. 1.9 на пути распространения электромагнитной волны поставить металлическую стенку, то волна отразится от нее и двинется в обратном направлении. Дойдя до противоположной стенки, она вновь отразится, и этот процесс будет повторяться до тех пор, пока из-за потерь энергии в стенках волновода волна окончательно не затухнет. Если при этом фазы многократно отраженных от стенок волн будут совпадать, то эти волны, взаимно усиливая друг дру—

га, могут в сотни раз увеличить напряженности электромагнитных полей в рассматриваемой области.

Как известно из физики, суммирование одинаковых по частоте и амплитуде вогн, движущихся в противоположных направлениях, дает в итоге стоячую волну. Поэтому в рассматриваемом объеме структура полей едоль продольной оси будет подобна структуре полей вдоль остальных координат. Это утверждение не очевидно, и некоторым посетителям может показаться сомнительным. В качестве доказательства можно привести пример, часто наблюдаемый в природе. Стоя у каменной набережной, можно заметить, как волны, направленные к берегу, складываясь с отраженными от гранитных стен, создают иллюзию полного отсутствия продольного движения. Волны поднимаются и озапускаются, находясь на одном и том же место и никуда не двигаясь — По этому поводу хорошо сказал большой ученый Козьма Прутков: Бросая в воду камешки, смотри на круги, ими образуемые; иначе такое бросание будет пустою забавою.

 

Рис. 1.10. Влияние ориентации щелей е волноводе на их излучающую способность (распредепение токов на внутренней поверхности волновода отображено для волны)


Явление, при котором устанавливается режим стоячих волн, называется резонансом, а устройство, где все это происходит, — резонатором. Геометрическое тело, образованное нами в результате манипуляций с волноводом, есть не что иное, как призма; соответственно подобные резонаторы называются призматическими. Разумеется, призматическая форма не является обязательным атрибутом резонатора. Любой обьем, ограниченный со всех сторон проводящей поверхностью, может рассматриваться как резонатор. Однако на практике стремятся использовать простые формы, поскольку их параметры могут быть просчитаны аналитически. Более сложные формы требуют расчетоо с помощью специальных численных методоо на мощных компьютерах, причем время, требуемое для расчета только резонансных частот, может измеряться часами. Но никакой компьютер не поможет, если резонатор имеет форму, не поддающуюся математическому описанию. В отом случае помочь может только эксперимент, то ость вы изготавливаете резонатор замысловатой формы, который, на ваш взгляд, должен обладать превосходными свойствами, включаете — не работает; вносите коррективы, включаете — не работает. И так до тех пор, пока не добьетесь требуемого результата или пока не лопнет ваше терпение и вы не решите, что лучше заняться выращиванием кактусов.

Аналогом резонатора в радиотехнике служит колебательный контур. Этапы постепенного преобразования розонатора в контур по мере увеличения резонансной частоты отображены на рис. 1.11.

 

Рис. 1.11. Последовательный переход от колебательного контура к резонатору по мере увеличения частоты

С повышением резонансной частоты контура значения величин L и С уменьшаются. Конструктивно это выглядит как раздвижение пластин конденсатора и снижение количества витков катушки сначала до одного, а затем до нескольких, параллельно включенных полувитков, которые в пределе сливаются в единую замкнутую полость. Как и в контуре, основными параметрами резонатора являются резонансныо частоты и добротность. Рассмотрим каждый из этих параметров в отдельности применительно к призматическому резонатору, как наиболее нас интересующему. Мы получили его из волновода, поэтому вполне естественно, что часть свойств волновода будет присуща и призматическому резонатору. Множество типов волн, существующих в волноводе, трансформируется в стоячие волны резонатора, которые образуют множество видов когебаний. По аналогии с прямоугольным волноводом, виды колебаний призматического резонатора обозначаются путем добавления к типу волны ощо одного индекса, указывающего количество стоячих полуволн вдоль продольной координаты. Собственно понятия продольной и поперечной координат для резонатора теряют смысл, поскольку структура полей в любом направлении зависит только от вида колебаний и геометрических размеров сторон. Ни одно из направлений нельзя выделить как приоритетное. При этом рекомендуется помнить, что обозначение вида копебаьий связано с определенной ориентацией призматического резонатора. к примеру, один и тот же вид может рассматриваться как Hi, Н101, Нои в зависимости от выбранной инфраструктуры координат.


Каждый вид колебаний в резонаторе характеризуется собственной резонансной частотой и добротностью. Аналогично волноводу, самый низкочастотный вид называется основным, остальные — высшими видами. На практике обычно используется основной вид, по тем же причинам, что и в случае волновода. Камера микроволновой печи, которую можно рассматривать как призматический резонатор, — это как раз то редкое исключение из правила, то подтверждает само правило. Дело в том, что резонансные явления в камере, скорее, вынужденная необходимость, чем желательное явление. Более подробно этот вопрос будет рассмотрен в сайте Камера микроволновой печи.

Длины волн резонаторных видов колебаний вычисляются по формуле, напоминающей формулу для расчета критических длин волн в волноводе:

 

Как и в волноводе, в резонаторе существуют Е и Н виды колебаний. Но, как рекомендуется из приведенной формулы, резонансная частота зависит только от индексов вида колебаний, а не от типа волны. к примеру, колебания видов Еш и Нш будут происходить на одной и той же частоте. В этом случае говорят, что данные виды колебаний являются вырожденными. Реальная картина поля в резонаторе будет представлять собой коктейль из этих видов. Преобладание колебаний того или иного вида будет связано только с условиями возбуждения.


Ранее была отмечена аналогия между резонатором и колебательным контуром. Но есть существенная разница между видами колебаний в резонаторе и гармониками контура. Природа этих различий кроется в пространственной форме колебаний в резонаторе, в то время как в контуре электромагнитная энергия может двигаться только в одном направлении — вдоль проводника с током. Поэтому гармоники всегда кратны основной частоте, а в резонаторе все определяется соотношением индексов т, п, р, различные сочетания которых позволяют получать большое разнообразие видов колебаний, частоты которых могут располагаться на любом расстоянии от основной частоты. На рис. 1.12а отображен спектр резонансных частот для резонатора с поперечными величиными 200x300x400 мм, то есть примерно соответствующим камере микроволновой печи. Как нетрудно заметить, чем дальше мы удаляемся в сторону более высоких частот, тем гуще расположены резонансные частоты. В пределе они сливаются в сплошной спектр. Штриховой линией отмечена рабочая частота микроволновых печей. Несмотря на то, что возможна ситуация, когда непосредственно на рабочей частоте нет ни одного резонанса, в камере они будут возбуждаться в большом количестве. Чтобы понять, каким образом это происходит, необходимо вначале рассмотреть второй основной параметр резонатора — добротность.

 

Рис. 1.12. Спектр резонансных частот камеры микроволновой печи с поперечными величиными 200x300x400 мм (а), и амплитудно-частотная характеристика резонанса вблизи рабочей частоты (б)


Как уже отмечалось, при резонансе амплитуды электрического и магнитного полей в сотни и тысячи раз превышают амплитуду возбуждающего поля. Максимальное значение амплитуд ограничивается тем, что с ростом напряженности магнитного поля возрастают и токи в стенках резонатора, что приводит к дополнительным потерям. В какой-то момент энергия, теряемая в стенках, сравняется с энергией возбуждения и установится состояние равновесия.

Таким образом, в резонаторе запасается некоторая энергия. Если в этот момент отключить источник возбуждения, то колебания в резонаторе продолжаются относительно долго, (это могут быть сотни периодов), пока вся запасенная энергия не израсходуется на нагрев стенок. Очевидно, чем меньше потери в резонаторе, т.е. чем выше его качество, тем на более высоком уровне ста—

билизируется амплитуда колебаний и тем дольше они будут происходить после отключения генератора. Для определения качества резонатора абсолютные значения амплитуд и времени затухания непригодны, поскольку они зависят от уровня входного сигнала. Удобнее в качестве характеристики резонатора использовать отношение запасенной энергии к величине подводимой мощности или, что то же самое, к мощности, теряемой в резонаторе за один период колебаний. Это отношение и называется добротностью.

Каждый резонатор способен работать на любой из принадлежащих ему резонансных частот или даже сразу на нескольких. Поскольку потери на разных частотах разные, добротность всегда определяется применительно к какой-то конкретной частоте. Обычно это основная частота, но бывают специфические случаи, когда резонатор возбуждается на более высокочастотных видах колебаний. Как уже упоминалось, микроволновая печь — один из таких случаев.

Чем выше добротность, тем уже полоса частот, в той возможно возбуждение резонатора, и тем больше амплитуда колебаний электромагнитного поля.


Если нет потерь, то возбуждение резонатора возможно только на резонансной частоте. Шаг влево, шаг вправо — гибель для колебаний. Но резонатор без потерь — это некая идеальная абстракция наподобие непогрешимого Иисуса Христа. В реальной жизни потери и грехи всегда есть, хотя они могут быть очень незначительны. Добротность самых высококачественных резонаторов, работающих в условиях сверхпроводимости, может превышать 10 000. В большинстве вакуумных приборов СВЧ добротность составляет порядка 1000.

Добротность пустой камеры микроволновой печи на рабочих видах колебаний не превышает 100, поэтому полоса частот, на той происходит ее возбуждение, более 25 МГц. Следовательно, камера может возбужда

Форма входа

Поиск

Друзья сайта

  • Официальный блог
  • Сообщество uCoz
  • FAQ по системе
  • Инструкции для uCoz